back to S1S home

Sunday, April 14, 2019

#403 Image sensing relies entirely on semiconductors

The image sensing devices are designed to capture light representing image and to convert it into electrical signal. The image sensors are at the core of any imaging device such as digital still cameras, digital video cameras, mobile devices, medical, surveillance, scientific, and broadcast instrumentation and many others we rely on so heavily in our daily lives.


The message here is that the image sensing devices are operating based on the physical properties of semiconductors and are manufactured using semiconductor materials. As a result, imaging devices constitute an important segment of commercial semiconductor technology. Two the most important types of semiconductor imaging devices are both based on the physical properties of the MOS (Metal-Oxide-Semiconductor) structure. First, involves CCD (Charge Coupled Devices) image sensors. Second, CMOS (Complementary MOS) image sensors. Quite interestingly this is fundamentally the same MOS structure upon which logic cells constituting all important digital integrated circuits are constructed. Equally interesting is the fact that the silicon is a semiconductor material used to fabricate both types of devices.

Posted by Jerzy Ruzyllo at 10:36 AM | Semiconductors | Link is the personal blog of Jerzy Ruzyllo. With over 35 years of experience in academic research and teaching in the area of semiconductor engineering (currently holding position of a Distinguished Professor of Electrical Engineering and Professor of Materials Science and Engineering at Penn State University), he has a unique perspective on the developments in this progress driving technical domain and enjoys blogging about it.

With over 2000 terms defined and explained, Semiconductor Glossary is the most complete reference in the field of semiconductors on the market today.

‹‹ November 2019 ››
W Mo Tu We Th Fr Sa Su
44 1 2 3
45 4 5 6 7 8 9 10
46 11 12 13 14 15 16 17
47 18 19 20 21 22 23 24
48 25 26 27 28 29 30  

Copyright © 2019 J. Ruzyllo. All rights reserved.