back to S1S home

Sunday, March 5, 2017

#365 Charge carriers mobility

Mobility of electrons and holes is a key material parameter which pre-determines performance of any given semiconductor material in high-speed device applications. Sometimes the fact that the electron mobility is a material specific parameter, and hence, is different in different semiconductors does not seem to be fully recognized.

 

Free electrons and holes carrying an electric charge and moving in semiconductor material are subject to severe scattering resulting from collisions and electrostatic interactions with host and dopant atoms in the lattice. All these interactions come down to the material specific adjustments of the charge carriers movement in semiconductors which are collectively expressed by a single material parameter µ known as mobility (unit [cm2/Vs]) of electrons, µn, and mobility of holes, µp, in semiconductors. Depending on the composition of material and its crystal structure electron mobility may vary by orders of magnitude.  For instance, electron mobility at room temperature in silicon, Si, is 1500 cm2/Vs while in indium antimonide, InSb, about 80000 cm2/Vs.

 

Posted by Jerzy Ruzyllo at 11:26 AM | Semiconductors | Comments (5) | Link



Semi1source.com/blog is the personal blog of Jerzy Ruzyllo. With over 35 years of experience in academic research and teaching in the area of semiconductor engineering (currently holding position of a Distinguished Professor of Electrical Engineering and Professor of Materials Science and Engineering at Penn State University), he has a unique perspective on the developments in this progress driving technical domain and enjoys blogging about it.



With over 2000 terms defined and explained, Semiconductor Glossary is the most complete reference in the field of semiconductors on the market today.






‹‹ October 2017 ››
W Mo Tu We Th Fr Sa Su
39 1
40 2 3 4 5 6 7 8
41 9 10 11 12 13 14 15
42 16 17 18 19 20 21 22
43 23 24 25 26 27 28 29
44 30 31          


Copyright © 2017 J. Ruzyllo. All rights reserved.