back to S1S home

Sunday, February 19, 2017

#364 Why ternary and quaternary compounds?

The question is why bother with ternary (three elements) and quaternary (four elements) semiconductor compounds if binary III-V and II-VI compounds cover a brad range of bandgaps and lattice constants? The answer is that  by mixing and matching various binary  alloys continuous and  independent modifications of the energy band width and lattice constants of the end compound can be achieved.

Taking aluminum gallium arsenide (AlGaAs) as an example we can see that by changing Al fraction x in AlxGa1-xAs, material transitions from gallium arsenide GaAs (x = 0) to aluminum arsenide AlAs (x = 1) is taking place. In the process the bandgap of the compound changes from Eg = 1.42 eV to  Eg = 2.16 eV for AlAs with negligible changes in the lattice constant.  


In the case of II-VI compounds by alloying for instance CdTe and ZnTe into CdxZn(1-x)Te, or CZT, and changing its composition gradually by changing x the bandgap of the ternary alloy can be varied from 1.5 eV for x =1 to 2.2 eV for x = 0. Even finer tuning of the bandgap characteristics within similar range, but at the expense of more complex processing, can be accomplished by alloying two binary compounds into quaternary compound, e.g ZnSe and CdTe into quaternary compound Zn1-yCdySe1-xTex.


Posted by Jerzy Ruzyllo at 09:54 AM | Semiconductors | Link is the personal blog of Jerzy Ruzyllo. With over 35 years of experience in academic research and teaching in the area of semiconductor engineering (currently holding position of a Distinguished Professor of Electrical Engineering and Professor of Materials Science and Engineering at Penn State University), he has a unique perspective on the developments in this progress driving technical domain and enjoys blogging about it.

With over 2000 terms defined and explained, Semiconductor Glossary is the most complete reference in the field of semiconductors on the market today.

‹‹ August 2018 ››
W Mo Tu We Th Fr Sa Su
31 1 2 3 4 5
32 6 7 8 9 10 11 12
33 13 14 15 16 17 18 19
34 20 21 22 23 24 25 26
35 27 28 29 30 31    

Copyright © 2018 J. Ruzyllo. All rights reserved.