back to S1S home

Sunday, April 5, 2015

#323 Scattering

The electrons and holes moving in semiconductor under the influence of an electric field are subject to inevitable collisions causing their scattering and adversely altering their transport across the lattice. The difference in the extent and the nature of scattering in the bulk of semiconductor (see previous entry) and in its near-surface region is a cause of the fundamental difference in the conductivity of semiconductor in these two regions.

 

 

One can envision the lattice scattering (a result of interactions between the electrons and holes in motion and the vibrating lattice atoms) and ionized dopant scattering (a result of interactions between the electrons and holes and the dopant ions located  in the lattice) being somewhat different in the bulk of semiconductor and at its surface. It is, however, the defect scattering (a result of interactions between the electrons and holes in motion and the defects in the atomic structure of semiconductor) that accounts for the key differences between carrier transport in the bulk and in the near-surface region. As mentioned in the previous entry this difference manifests itself in the significantly reduced carrier mobility in the latter case.

 

Posted by Jerzy Ruzyllo at 07:55 PM | Semiconductors | Link



Semi1source.com/blog is the personal blog of Jerzy Ruzyllo. With over 35 years of experience in academic research and teaching in the area of semiconductor engineering (currently holding position of a Distinguished Professor of Electrical Engineering and Professor of Materials Science and Engineering at Penn State University), he has a unique perspective on the developments in this progress driving technical domain and enjoys blogging about it.



With over 2000 terms defined and explained, Semiconductor Glossary is the most complete reference in the field of semiconductors on the market today.






‹‹ February 2018 ››
W Mo Tu We Th Fr Sa Su
5 1 2 3 4
6 5 6 7 8 9 10 11
7 12 13 14 15 16 17 18
8 19 20 21 22 23 24 25
9 26 27 28        


Copyright © 2018 J. Ruzyllo. All rights reserved.